Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding.
نویسندگان
چکیده
This study reveals the peculiar in vivo cell kinetics and cell turnover of the marine sponge Halisarca caerulea under steady-state conditions. The tropical coral reef sponge shows an extremely high proliferation activity, a short cell cycle duration and massive cell shedding. Cell turnover is predominantly confined to a single cell population, i.e. the choanocytes, and in this process apoptosis only plays a minor role. To our knowledge, such fast cell kinetics under steady-state conditions, with high turnover by shedding in the absence of apoptosis, has not been observed previously in any other multicellular organism. The duration of the cell cycle in vivo resembles that of unicellular organisms in culture. Morphological and histochemical studies demonstrate compartmentalization of choanocytes in the sponge tissue, which corresponds well with its remarkable cellular kinetics. Coral reef cavity sponges, like H. caerulea, inhabit low nutrient tropical waters, forcing these organisms to filter large volumes of water and to capture the few nutrients efficiently. Under these oligotrophic conditions, a high cell turnover may be considered as a very useful strategy, preventing permanent damage to the sponge by environmental stress. Halisarca caerulea maintains its body mass and keeps its food uptake system up to date by constantly renewing its filter system. We conclude that studies on cell kinetics and functional morphology provide new and essential information on the growth characteristics and the regulation of sponge growth in vivo as well as in vitro and the role of choanocytes in tissue homeostasis.
منابع مشابه
Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?
Sponges have a remarkable capacity to rapidly regenerate in response to wound infliction. In addition, sponges rapidly renew their filter systems (choanocytes) to maintain a healthy population of cells. This study describes the cell kinetics of choanocytes in the encrusting reef sponge Halisarca caerulea during early regeneration (0-8 h) following experimental wound infliction. Subsequently, we...
متن کاملCell Turnover and Detritus Production in Marine Sponges from Tropical and Temperate Benthic Ecosystems
This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2'-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for...
متن کاملIdentification species of Demospongiae sponge at Assaluyeh Persian Gulf
The marine environment is a rich source of biodiversity and chemical compounds, and based on biodiversity knowledge, it is believed that the highest biodiversity is related to living organisms in tropical and semi-equatorial regions. The goal of this study was the biodiversity of Demospongiae sponge in Assaluyeh area in May 2018. Sampling carried oyu by using Coadrat in three sites with three r...
متن کاملBiofouling of inlet pipes affects water quality in running seawater aquaria and compromises sponge cell proliferation
Marine organism are often kept, cultured, and experimented on in running seawater aquaria. However, surprisingly little attention is given to the nutrient composition of the water flowing through these systems, which is generally assumed to equal in situ conditions, but may change due to the presence of biofouling organisms. Significantly lower bacterial abundances and higher inorganic nitrogen...
متن کاملTracing 13C-enriched dissolved and particulate organic carbon in the bacteria- containing coral reef sponge Halisarca caerulea: Evidence for DOM feeding
Here we report on the trophodynamics of the bacteria-containing coral reef sponge Halisarca caerulea. The assimilation and respiration of the 13C-enriched substrates glucose, algal-derived dissolved and particulate organic matter (diatom-DOM and -POM), and bacteria were followed in 1and 6-h incubations. Except for glucose, all substrates were readily processed by the sponge, with assimilation b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 212 Pt 23 شماره
صفحات -
تاریخ انتشار 2009